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ABSTRACT

This research focuses on simulation of left-truncated and case-k interval
censored survival data from the log-normal model with a time-varying
covariate. Left-truncated data usually arises in prevalence cohort study
where randomly selected individuals from medical records may have con-
tracted certain disease for some duration of time but are free from event
of interest at time of entry into a survival study. In this research, we pro-
posed a simulation methodology by fixing the percentage of truncation
at 20% and 60% with the width of 4 months of inspection interval. The
procedure was computationally demanding due to the presence of left-
truncation and time-varying covariates. The suitability of the proposed
method was assessed based on the bias, standard error and root mean
square of the parameter estimates for the log-normal survival model.

Keywords: simulation, left-truncation, case-k interval censored, time-
varying covariates and log-normal distribution.
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1. Introduction

Left-truncation occurs in a clinical survival study when it is not feasible to
observe a patient from the time of contraction of a certain disease but at some
time point later which may be due to the study design, cost or time constraint.
In other words, these individuals are not observed from the beginning of the
study, but at some time point later, u. Also, the lifetimes of these individuals,
t ≥ u as they have to survive long enough in order to be selected into the
study. Subsequently, their lifetimes, t are said to be left-truncated at u. These
individuals are then followed prospectively with fixed k inspection times where
the exact event time is unknown except that it falls within an interval of (tl, tr)
where t ∈ (tl, tr) and tl ≤ tr with probability of 1. This type of data is known
as left-truncated and case-k interval censored (LTIC) survival data , where left-
truncated observations are existing cases (prevalence cohort) usually sampled
from medical registry records.

Therefore, individuals may enter the study at random age or time points as
the date of diagnosis may differ from one individual to the other, however, in
the presence of left-truncation only those who are free from failure are observed
by the researcher, refer Guo (1992). Additionally, other factors that affect t
known as covariates, x are only considered from the time of entry into the
study, refer Guo (1992), Klein and Moeschberger (2003), Lawless (1982). The
lifetime after selection forms the response variable, hence the term prospective,
refer Lawless (1982). Hence, the truncation time u contains no information on
the lifetime t or t is independent of u.

On the other hand, time-dependent covariates vary over time or equally
measured on regular basis for an individual in a study. By accommodating
the record of a time-dependent covariate up to a specified time, say t enables a
researcher to study the complete effect of these variables on the survival time T .
As an example, accounting for the change in the level of covariates such as age,
glucose level, blood pressure or tumour sizes provides the up to date affect of
these variables on the hazard and survival rate of the individuals in the study,
subsequently providing more reliable prognosis of the future life expectancy
comparatively when these covariates are measured only at the time origin Nardi
and Schemper (2003). Two types time-dependent covariates that are usually
encountered in a survival study are the internal and external covariates. The
former time-dependent covariate can be measured repeatedly for an individual
over a specified time period of t for as long as the patient is still alive. Examples
of such covariate includes a patient’s blood pressure level, glucose level, red and
white blood count, refer Collett (2003), Kalbfleisch and Prentice (2011).
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Subsequently, external time-dependent covariates can be predicted indepen-
dently which does not require a patient to be alive at the time of measurement.
Following Kalbfleisch and Prentice (2011), an evident example for this type of
covariate is the age factor which is measured at the time origin for an individ-
ual where the change in the value can be determined for any particular time
interval without requiring the presence of this individual in the study. Also,
some external covariates may influence the survival time of an individual at
time t which however exist independently in the sense that the covariate’s level
at time t and after t is independent. Example of such covariate may exist in
respiratory survival studies, where the presence of air pollutant may affect the
life span of individuals with heart disease or lung cancer where the change in
the air quality is independent of any particular individual in the study, refer
Collett (2003), Kalbfleisch and Prentice (2011), Kiani and Arasan (2012).

Following Cox and Oakes (1984), Klein and Moeschberger (2003), Nardi
and Schemper (2003), parametric models often remain a useful tool as they are
fitted much faster and offers more efficient estimates under conditions such as
dependency of the survival times on the covariates (either fixed or time-varying)
and when parameter values are far from zero. Subsequently, simulation proce-
dures enables a researcher to asses the performance of a proposed parametric
estimator concurrently in determining suitable inferential procedures for the
parameters in a specified model. This methodology is crucial in order to draw
reliable, precise and important information from the sample data in hand.

In this research, we proposed simulation methodology for LTIC survival
data with a time-varying covariate which mimics a lung cancer survival data.
The following section discusses the simulation algorithm involved in simulating
LTIC observations with time-varying covariates where the survival times, T are
known to follow the log-normal lifetime distribution.

2. Survival and hazard function of
left-truncated observations with a time-varying

covariate

Let xi be a covariate value for the ith individual which is updated at the
sequence of update time {τimj} with j = 0, 1, ..., ri. The complete history of
xi covariate after each update time can be defined as xi = (xi0, xi1, ..., xiri)
with covariate update times τij = (τi0, τi1, ..., τiri). In other words, xi0 is the
covariate baseline value at τi0, xi1 is the covariate value after the first update
time τi1 and xiri is the covariate value after the rthi update time. Following
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Petersen (1986) and Arasan and Lunn (2008), a time-varying discrete or con-
tinuous covariate x which is updated using a step-function stays constant at
x(τj) within the interval

[
τj , τ(j+1)

)
and suffers a jump to x(τj+1) at τ(j+1).

Examples of such change occurs in covariate that changes from one level to
another either dependently or independently, see Kiani and Arasan (2012). For
instance, change in blood pressure before or after the update time could either
increase or decrease independently. In contrary, staging of a disease will either
continuously decrease or increase depending on the level before the update
time. On a similar note, the covariate xi stays constant within

[
τij , τi(j+1)

)
and changes to xi(j+1) in the next subsequent interval. For the ith observation,
let xi[ti] denote the complete history of covariate values up to time ti. Following
that, the survival function for the ith left-truncated observation with lifetime
ti ≥ ui and conditional on xi[ti] is given as follows:

Sθ

[
ti|ti ≥ ui,xi[ti]

]
= exp

[
−
{∫ τi1

ui

hθ(si|xi0)ds

+

∫ τi2

τi1

hθ(si|xi1)ds

+ ...+

∫ ti

τiri

hθ(si|xiri)ds
}]
, (1)

with hθ(si|xij) is the hazard rate evaluated at the sequence of update times
τij , j = 0, 1, ..., ri. Note that the expression in (1) shows that the value of the
covariate for the ith left-truncated observation need to be observed from the
time observations are recruited in the study; ti ≥ ui and θ is the vector of
parameters in a specified model.

Let us consider a model with at most one covariate update time, j = 0, 1
and two covariate levels, xi0 and xi1. Therefore, the survival function in (1)
can be further simplified to accommodate before and after covariate update
time as follows:

Sθ

[
τi1|τi1 ≥ ui,xi[ti]

]
= exp

[
−
{∫ τi1

ui

hθ(si|xi0)ds

}]
, (2)

Sθ

[
ti|ti ≥ τi1,xi[ti]

]
= exp

[
−
{∫ τi1

ui

hθ(si|xi0)ds

+

∫ ti

τi1

hθ(si|xi1)ds
}]
. (3)
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Suppose that the lifetime of the ith left-truncated observation follows a log-
normal distribution. Following that, the hazard function before and after the
covariate update time is derived from (2) and (3). These are given in (4) and
(5) respectively:

hθ
[
τi1|τi1 ≥ ui,xi[ti]

]
=

φ
(

log(τi1)−(β0+β1xi0)
σ

)
τi1σ

(
1− Φ

(
log(τi1)−(β0+β1xi0)

σ

)) , (4)

hθ
[
ti|ti ≥ τi1,xi[ti]

]
=

φ
(

log(ti)−(β0+β1xi1)
σ

)
tiσ
(

1− Φ
(

log(ti)−(β0+β1xi1)
σ

)) , (5)

with φ(·) is the density function of the standard normal distribution.

3. Simulation of LTIC observations with
time-varying covariates

The simulation study proposed by Kiani and Arasan, Kiani and Arasan
(2012) and Balakrishnan and Mitra, Balakrishnan and Mitra (2014) is adopted
and modified to mimic the small cell lung cancer survival data studied by Tai
et.al, Tai et al. (2007) which provided a satisfactory fit with the log-normal
distribution. We have considered cases where covariate levels are independent
and dependent. The following assumptions hold with the simulation study:

1. The date of diagnosis are available for all the left-truncated observations.

2. All the observations are monitored continuously at fixed k inspection
times and the baseline/initial value of a covariate are measured at first
inspection times.

3. The lifetimes, t and left-truncation times, u are non-informative and in-
dependent of each other.

4. All the individuals were available for observations at all inspection times.

5. All the individuals were event free at the beginning time point of the
study.
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3.1 Simulation of the month of diagnosis

1. Fix the month of truncation or the beginning time point of the study,
namely y.

2. Simulate a set of random number of months which basically represents
the month of diagnosis of the lung cancer with unequal probabilities with
replacement; before ybl and after the month of truncation ycm where
l = 1, 2, ..., n1 and m = 1, 2, ..., n2. Note that ybl represents all prevalence
cohort with y > ybl and is fixed to yield a desired proportion of left-
truncated observations. The remaining observations are incidence cohort,
ycm observed from the beginning time point of the study with y = 0
and y < ycm . Note that this simulation study the total observation is
n = n1 + n2.

3. Calculate the left-truncation time, ul = y − ybl .

3.2 Simulation of the covariate update time

1. Simulate the update time, τl1 ∼ exp(λ) and τm1 ∼ exp(λ). In fact τl1 and
τm1 can be simulated from any continuous random distribution. Adjust
the value of λ to yield larger or smaller values of τl1 and τm1.

2. Retain the value of τl1 if and only if ybl + τl1 ≥ y, otherwise these obser-
vations are removed and new values of τl1 are simulated.

3.3 Simulation of the covariates

1. Independent covariates: Simulate first and second covariate level for the
prevalence cohort (xl0, xl1) and incidence cohort (xm0, xm1) indepen-
dently from the standard normal distribution.

2. Dependent covariates: Simulate at least two covariate levels indepen-
dently from the standard normal distribution for the prevalence and in-
cidence cohort.

(a) Divide the z scores of the standard normal distribution into consecu-
tive equal probability intervals. In this study, the z scores are divided
into five equal probability intervals, known as quintiles of the stan-
dard normal distribution, e.g. (−∞,−1.15], (−1.15,−0.32], (0.32, 0.32],
(0.32, 1.15] and (1.15,∞).
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(b) Select the first covariate level xl0(xm0) and second covariate level
xl1(xm1) for the prevalence (incidence) cohort based on these condi-
tions: i) The second covariate level is higher than the first covariate
level, e.g. xl1 > xl0;(xm1 > xm0).ii) The first and second level of the
covariate should not fall within the same interval. These assump-
tions appear to be more realistic representing age or staging of a
disease.

3.4 Simulation of the lifetimes

1. Simulate random values of zl ∼ unif(0, 1) and zm ∼ unif(0, 1) for l =
1, 2, ..., n1 and m = 1, 2, ..., n2.

2. Simulate lifetimes tl based on the following conditions:

tl =

{
exp

[
σΦ−1(Ql) + (β0 + β1xl1)

]
, zl < Rl

exp
[
σΦ−1(1− zl) + (β0 + β1xl0)

]
, otherwise,

(6)

with,

Ql = 1−
zl

(
1− Φ

(
log τl1−(β0+β1xl1)

σ

))
(

1− Φ
(

log τl1−(β0+β1xl0)
σ

)) ,

Rl =

(
1− Φ

(
log τl1 − (β0 + β1xl0)

σ

))
.

3. Simulate lifetimes tm in the similar manner.

4. Retain the value of tl if and only if ybl + tl ≥ y, otherwise the random
variables τl1, (xl0, xl1), tl and zl are removed and new values of these
random variables are simulated.

The combination of both observations from the prevalence and incidence cohort
form the complete data set of size n with variables ti, ui, xi0, xi1 and τi1 for
i = 1, 2, ...n.
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4. Likelihood of LTIC survival data with
log-normal lifetime distribution.

Consider observations from prevalence and incidence cohort who are moni-
tored periodically at fixed k inspection times with a sequel of inspection times
ai1 ≤ ai2 ≤ ... ≤ aik. The lifetime, ti of an ith individual could fall within
the following intervals with tLi and tRi are the left and right endpoints and
Pr(tLi ≤ tRi) = 1:

1. tLi < ti ≤ tRi and tLi < τi1 ≤ tRi , ti is interval censored and covariates
are updated.

2. τi1 ≤ tLi < ti ≤ tRi , ti is interval censored and covariates are updated.

3. tLi < ti ≤ tRi < τi1, ti is interval censored and covariates are not up-
dated.

4. τi1 ≤ tLi < ti <∞, ti is right-censored and covariates are updated.

5. tLi < ti < ∞ and tLi < τi1, ti is right-censored and covariates are not
updated.

6. τi1 ≤ tRi− ε ≤ ti ≤ tRi with ε ∈ <+, ti is observed exactly and covariates
are updated.

7. tRi− ε ≤ ti ≤ tRi < τi1 with ε ∈ <+, ti is observed exactly and covariates
are not updated.

8. 0 < ti ≤ ai1, ti is left-censored when ti occurs at an unknown time ai1 and
after time origin. Left-censored observations are only observed among the
incidence cohort and covariates are not updated.

Following that, the likelihood for both prevalence and incidence cohort with
log-normal lifetime distribution is derived using (2) to (5) and given in (7) and
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(8) respectively.

L(θ) =

n∏
i=1

[
(1−Ai)(1−Bi)− (1− Ci)(1−Di)

(1− Ui)(1−Bi)

]δIiδGi(1−δPi)
×
[

(1−Di)(Ci −Mi)

(1− Ui)(1−Bi)

]δIiδGiδPi
×
[
Fi −Ai
(1− Ui)

]δIi(1−δGi)(1−δPi)
×
[

(1−Di)(1−Mi)

(1− Ui)(Bi)

]δRiδGi
×
[

(1−Ai)
(1− Ui)

]δRi(1−δGi)
×
[

(1−Di)Vi
tRiσ(1− Ui)(1−Bi)

]δEiδGi
×
[

Zi
tRiσ(1− Ui)

]δEi(1−δGi)
,

(7)

L(θ) =

n∏
i=1

[
(1−Ai)(1−Bi)− (1− Ci)(1−Di)

(1−Bi)

]δIiδGi(1−δPi)
×
[

(1−Di)(Ci −Mi)

(1−Bi)

]δIiδGiδPi
× [Fi −Ai]δIi(1−δGi)(1−δPi)

×
[

(1−Di)(1−Mi)

(Bi)

]δRiδGi
× [(1−Ai)]δRi(1−δGi)

×
[

(1−Di)Vi
tRiσ(1−Bi)

]δEiδGi
×
[
Zi
tRiσ

]δEi(1−δGi)
× [Fi]

δLi ,

(8)
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with φ(·) is the density function of the standard normal distribution and,

Ai = Φ

(
log(tLi)− (β0 + β1xi0)

σ

)
Bi = Φ

(
log(τi1)− (β0 + β1xi1)

σ

)
Ci = Φ

(
log(tRi)− (β0 + β1xi1)

σ

)
Di = Φ

(
log(τi1)− (β0 + β1xi0)

σ

)
Mi = Φ

(
log(tLi)− (β0 + β1xi1)

σ

)
Fi = Φ

(
log(tRi)− (β0 + β1xi0)

σ

)
Ui = Φ

(
log(ui)− (β0 + β1xi0)

σ

)
Vi = φ

(
log(tRi)− (β0 + β1xi1)

σ

)
Zi = φ

(
log(tRi)− (β0 + β1xi0)

σ

)
.

Also the indicator variables is defined in (10) as follows:

δIi =

{
1, if individual’s survival times are interval censored
0, otherwise

δRi =

{
1, if individual’s survival times are right-censored
0, otherwise

δEi =

{
1, if individual’s survival times are observed exactly
0, otherwise

δLi =

{
1, if individual’s survival times are left-censored
0, otherwise
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δGi =

{
1, if individual’s covariates are updated
0, otherwise

δPi =

{
1, if covariates are updated before tLi
0, otherwise.

(9)

By combining the likelihood in (7) and (8), the log-likelihood for n indepen-
dent random samples consisting both prevalence and incidence cohort is given
in (10):

`(θ) =

n∑
i=1

δIiδGi(1− δPi) log[(1−Ai)(1−Bi)

− (1− Ci)(1−Di)] +

n∑
i=1

δIiδGiδPi log [1−Di]

+

n∑
i=1

δIiδGiδPi log [Ci −Mi]

+

n∑
i=1

δIiδGi(1− δPi) log [Fi −Ai]

+

n∑
i=1

δRiδGi log[1−Di] +

n∑
i=1

δRiδGi log[1−Mi]

+

n∑
i=1

δRi(1− δGi) log[1−Ai] +

n∑
i=1

δEiδGi log [Vi]

−
n∑
i=1

δEi log [tRiσ] +

n∑
i=1

δEiδGi log [1−Di]

+

n∑
i=1

δEi(1− δGi) log [Zi] +

n∑
i=1

δLi log [Fi]

−
n∑
i=1

δGi log [1−Bi]−
n∑
i=1

(1− δvi) log [Ui] , (10)

where,

δvi =

{
0, if individual’s survival times are left-truncated
1, otherwise.
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5. Simulation study

A simulation study is conducted for N = 2000 by generating samples of size
n = 30, 60, 100 and 200. These samples are generated based on the simulation
study discussed in Section 3. The percentage of left-truncated observations
were fixed at 20% and 60% for a study period of 60 months with width of
inspection times of 4 months (k = 15). The bias, standard error (SE) and
root mean square error (RMSE) are compared for all the parameter estimates
under four different settings; 20% truncation with independent covariates (20pt;
inc), 60% truncation with independent covariates (60pt; inc), 20% truncation
with dependent covariates (20pt; dpc) and 60% truncation with dependent
covariates (60pt; dpc). All simulation is done using R statistical programming
software. We used the values of RMSE,

√
SE2 + bias2 to measure the overall

performance of the estimator as it measures the average overall error of the
parameter estimates compared to both bias and SE which contribute to the
average error size of an estimator.

6. Results and Discussion

Table 1 shows the average percentage of updated covariates, interval cen-
sored, right censored, exact lifetimes and left-censored observations generated
through the simulation study under the settings of (20pt; inc), (60pt; inc),
(20pt; dpc) and (60pt; dpc). By fixing the covariate levels, e.g. compare (20pt;
inc) and (60pt; inc), we observe that the percentage of updated covariates are
slightly lower at higher percentages of truncation. This may be due to the co-
variate update time being large for most of the observations under the settings
of (60pt; inc) whom may have experience the event of interest prior to the
update time. This is also evident with higher percentage of interval censored
observations observed when the percentage of truncation is higher compared
to when lower percentage of truncation is observed, e.g. compare (60pt; inc)
and (20pt;inc) in Table 1.

In contrary, higher percentages of right-censored observations are observed
when the percentage of truncation is lower or equally when more observations
are recruited from the incidence cohort (new cases), e.g. (20pt;inc). This may
be due to the number of inspection times being small for most of these new
cases whom may not have experienced the event of interest even until the last
inspection times. This subsequently results in the increase of right-censored
failure times among the new cases. However, the percentage of exact and
left-censored observations are approximately close despite the percentage of
truncation.
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By fixing the percentage of truncation, e.g. compare (20pt; inc) and (20pt;
dpc), the percentage of covariate update times, interval-censored, right-censored,
exact observations and left-censored observations are approximately close de-
spite covariate levels, see Table 1.

Table 1: Average percentages of updated covariates (% cov.update), interval censored (IC), right
censored (RC), exact observations (EO) and left-censored (LC) observations.

setting 20pt;inc 60pt;inc 20pt;dpc 60pt;dpc

% cov.update 0.8165 0.7771 0.8099 0.7685
% IC 0.7706 0.7741 0.7708 0.7736
% RC 0.0078 0.0061 0.0079 0.0066
% EO 0.2223 0.2198 0.2211 0.2198
%LC 0.0002 0.0001 0.0002 0.0001

Based on Table 2, the absolute value of bias for σ̂ decreases with the increase
in the sample size. However, the trend seems to be unclear for β̂0 and β̂1
. Nevertheless, none of the bias values of these parameter estimates seems
to be a concern as these values are insignificant at either 5% or 10% level of
significance.

Table 2: Bias, SE and RMSE for parameter estimates with independent and dependent time-
varying covariates

parameter σ̂ β̂0 β̂1

setting n bias SE rmse bias SE rmse bias SE rmse

20pt;inc

30 -0.0373 0.0666 0.0763 0.0300 0.0901 0.0950 -0.0017 0.0997 0.0997
60 -0.0265 0.0455 0.0527 0.0310 0.0653 0.0724 -0.0026 0.0644 0.0665
100 -0.0223 0.0366 0.0429 0.0308 0.0501 0.0588 -0.0013 0.0515 0.0515
200 -0.0193 0.0248 0.0314 0.0303 0.0346 0.0460 -0.0030 0.0358 0.0359

60pt;inc

30 -0.0350 0.0681 0.0766 0.0344 0.0934 0.0995 -0.0037 0.1000 0.1000
60 -0.0260 0.0476 0.0543 0.0334 0.0673 0.0752 -0.0033 0.0676 0.0677
100 -0.0230 0.0373 0.0438 0.0325 0.0501 0.0597 -0.0013 0.0530 0.0531
200 -0.0192 0.0267 0.0329 0.0324 0.0358 0.0482 -0.0017 0.0373 0.0373

20pt;dpc

30 -0.0307 0.0676 0.0742 0.0285 0.0932 0.0974 -0.0015 0.0966 0.0966
60 -0.0238 0.0475 0.0531 0.0303 0.0659 0.0726 -0.0082 0.0657 0.0662
100 -0.0211 0.0368 0.0424 0.0281 0.0507 0.0580 -0.0041 0.0510 0.0511
200 -0.0189 0.0258 0.0320 0.0299 0.0354 0.0464 -0.0030 0.0347 0.0348

60pt;dpc

30 -0.0358 0.0680 0.0768 0.0378 0.0935 0.1001 -0.0037 0.0968 0.0969
60 -0.0262 0.0496 0.0561 0.0311 0.0676 0.0744 -0.0041 0.0680 0.0681
100 -0.0218 0.0372 0.0431 0.0321 0.0513 0.0605 -0.0050 0.0518 0.0520
200 -0.0176 0.0265 0.0318 0.0324 0.0366 0.0489 -0.0043 0.0362 0.0364

Also, the SE and RMSE decreased with the increase in sample size for all
the parameter estimates under all settings, see Table 2. Further, as the per-
centage of truncation increased, e.g. compare (20pt;inc) and (60pt; inc), the
SE and RMSE equally increased. This is as expected, as the increase in the
proportion of truncation results in the rise of the number of observations ex-
cluded from the left-tail of the log-normal distribution. Thus the sampling bias
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and the SE of the parameter estimates increases due to the loss of information
from the removed observations. Furthermore, the higher percentage of interval
censored observations observed in the presence of higher percentage of trunca-
tion subsequently results the likelihood function to rely on the survival function
with interval censored times rather than the density function with exact failure
times.

Overall, the values of SE and RMSE for all the parameter estimates are
lower at lower percentage of truncation e.g. (20pt; inc) and (20pt; dpc) com-
pared to when higher proportion of truncation is present, e.g. (60pt; inc) and
(60pt; dpc).

7. Conclusions and Recommendations

In conclusion, the proposed estimator performed well under both covariate
levels (dependent or independent) despite the percentage of truncation. Based
on the values of RMSE, the proposed estimator is optimum at lower percent-
age of truncation at both covariate levels. In other words the Newton-Raphson
iterative algorithm generated more reliable and accurate estimates under the
settings of under the settings of (20pt; inc) and (20pt; dpc) compared to (60pt;
inc) and (60pt; dpc). This indicates that the increase in the number of observa-
tions from an incidence cohort (new cases) will further improve the performance
of the proposed estimator.

The results following the simulation study is equally applicable with the
parameters of the log-logistic distributions as this distribution shares similar
hazard rate properties with the log-normal distribution. Nonetheless, the sim-
ulation methodology proposed in this study can be applied to any parametric
distributions by specifying the correct survival and hazard function through
the general survival function discussed in section 2.
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